Contributions from the following countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosnia and Herzegovina*</td>
<td>048 - 053</td>
</tr>
<tr>
<td>Croatia</td>
<td>054 - 071</td>
</tr>
<tr>
<td>Cyprus</td>
<td>072 - 083</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>084 - 105</td>
</tr>
<tr>
<td>Estonia</td>
<td>106 - 117</td>
</tr>
<tr>
<td>France</td>
<td>118 - 141</td>
</tr>
<tr>
<td>Georgia</td>
<td>142 - 151</td>
</tr>
<tr>
<td>Germany</td>
<td>152 - 167</td>
</tr>
<tr>
<td>Great Britain</td>
<td>168 - 179</td>
</tr>
<tr>
<td>Greece</td>
<td>180 - 193</td>
</tr>
<tr>
<td>Hungary</td>
<td>194 - 205</td>
</tr>
<tr>
<td>Ireland, Republic and Northern</td>
<td>206 - 207</td>
</tr>
<tr>
<td>Italy</td>
<td>208 - 253</td>
</tr>
<tr>
<td>Latvia</td>
<td>254 - 263</td>
</tr>
<tr>
<td>Lithuania</td>
<td>264 - 271</td>
</tr>
<tr>
<td>Malta</td>
<td>272 - 281</td>
</tr>
<tr>
<td>Montenegro</td>
<td>282 - 289</td>
</tr>
<tr>
<td>Poland</td>
<td>290 - 305</td>
</tr>
<tr>
<td>Portugal</td>
<td>306 - 313</td>
</tr>
<tr>
<td>Slovenia</td>
<td>314 - 341</td>
</tr>
<tr>
<td>Spain</td>
<td>342 - 375</td>
</tr>
<tr>
<td>Switzerland*</td>
<td>376 - 381</td>
</tr>
<tr>
<td>Turkey</td>
<td>382 - 383</td>
</tr>
<tr>
<td>Japan</td>
<td>384 - 405</td>
</tr>
</tbody>
</table>

* Country not being ECCE member
** The contribution of JSCE-Japan Society of Civil Engineers as guest
Some notes on the history of bridge structures

Written by Gorazd Humar, B.Sc.C.E., ©
Review: prof. Enzo Siviero, Faculty of Architecture, Venice

The article that follows does not aim to describe the entire history of construction, or more particularly of bridge-building, since it does not cover the whole of the historical period in which bridges have been built. The text is a compilation of the author's independent research and a number of his studies relating to the history of bridge-building. It also includes material that the author presents to students in his lectures on the history of construction at the University of Maribor's Faculty of Civil Engineering. The text also contains significant statements and findings from numerous researchers of the history of construction. The author has combined their findings into the overall context of the article according to the logic of their development over time and their importance, and according to his own judgement, so that the text before you can tell the story, supported by historical facts, of the development of bridge-building expertise up to the beginning of the twentieth century.

Some statements and findings are dealt with in more detail because of the interesting points they raise, and serve to make the varied history of construction even more interesting. Why can’t the history of construction, and particularly the history of bridge-building, be read like a thrilling novel? The many famous builders and engineers who have built bridges have supplied more than enough reasons to suggest that it can. So let us begin...

Claude Monet (1840–1926)
Le Pont Japonais (The Japanese Bridge)
The foundations of modern structural mechanics are laid in the 17th and 18th centuries

As mentioned earlier, the construction of the Santa Trinita bridge in Florence in 1569 represented a true turning point in the understanding of structural mechanics and, consequently, the line of the arch. The new line of the flattened arch establishes an entirely new understanding of the interplay of gravitational and other forces in the bridge structure. The arch has long since ceased to be the semicircular form used in ancient Rome. It has become increasingly flattened, but the most important thing is that the line of the arch of the Santa Trinita bridge is very close to a catenary, in other words a curve that increases its curvature as it moves from the centre of the arch towards the abutments. In this way the horizontal forces in the centre of the arch are increasingly transformed into vertical forces in the pier or abutment.

The research by Ammannati, the builder of the Santa Trinita bridge, into the interplay of forces in a catenary was successfully continued by one of the fathers of modern mechanics, Galileo Galilei (1564–1642), who was not only famous as an astronomer. As well as establishing the laws of falling bodies, Galileo attempted to determine the path of projectiles. He established that the path of a horizontally thrown object is a perfect parabola. In 1638 he succeeded in proving that a parabolic trajectory corresponds to a catenary. Essentially, the interplay of forces in an arch bridge structure of catenary shape is similar to that in a falling projectile.

Also dating from this period is the first known proposal to build a bridge suspended on chains. This was the work of the Croatian inventor and engineer Faustus Veranzio, who was not only famous as an astronomer. As well as establishing the laws of falling bodies, Galileo attempted to determine the path of projectiles. He established that the path of a horizontally thrown object is a perfect parabola. In 1638 he succeeded in proving that a parabolic trajectory corresponds to a catenary. Essentially, the interplay of forces in an arch bridge structure of catenary shape is similar to that in a falling projectile.

Also dating from this period is the first known proposal to build a bridge suspended on chains. This was the work of Faustus Veranzio, who was not only famous as an astronomer. As well as establishing the laws of falling bodies, Galileo attempted to determine the path of projectiles. He established that the path of a horizontally thrown object is a perfect parabola. In 1638 he succeeded in proving that a parabolic trajectory corresponds to a catenary. Essentially, the interplay of forces in an arch bridge structure of catenary shape is similar to that in a falling projectile.

A crucial turning point in the history of bridge-building came when Jean-Rodolphe Perronet (1708–1794) established the École des Ponts et Chaussées (School of Bridges and Roads) in France in 1747. This school provided the basis for the construction of bridges according to the engineering principles of statics, strength of materials, mechanics and other parallel sciences that contributed, in a scientific manner, to the introduction of new construction principles in bridge-building that were supported by calculations. Perronet’s contribution to the further development of bridges is of inestimable importance. With the help of the findings of his school, he entirely changed the shape of the arch as the principal load-bearing element of the bridge. He flattened the arch to a remarkable degree and in doing so did away with all previous conceptions of arch design in bridge structures.

Of enormous importance for the further understanding of structural mechanics was the research conducted in the seventeenth century by Robert Hooke (1635–1703). He discovered the law of elasticity – known as Hooke’s Law – which is still valid today.

The most solid foundations of modern structural mechanics were, however, laid by Sir Isaac Newton (1642–1727). He presented his research in his 1667 work Philosophiae Naturalis Principia Mathematica, condensing it into the laws that we know today as Newton’s laws. Newton’s discoveries opened the way to further development of the science of construction.

A crucial turning point in the history of bridge-building came when Jean-Rodolphe Perronet (1708–1794) established the École des Ponts et Chaussées (School of Bridges and Roads) in France in 1747. This school provided the basis for the construction of bridges according to the engineering principles of statics, strength of materials, mechanics and other parallel sciences that contributed, in a scientific manner, to the introduction of new construction principles in bridge-building that were supported by calculations. Perronet’s contribution to the further development of bridges is of inestimable importance. With the help of the findings of his school, he entirely changed the shape of the arch as the principal load-bearing element of the bridge. He flattened the arch to a remarkable degree and in doing so did away with all previous conceptions of arch design in bridge structures.

Of enormous importance for the further understanding of structural mechanics was the research conducted in the seventeenth century by Robert Hooke (1635–1703). He discovered the law of elasticity – known as Hooke’s Law – which is still valid today.

The most solid foundations of modern structural mechanics were, however, laid by Sir Isaac Newton (1642–1727). He presented his research in his 1667 work Philosophiae Naturalis Principia Mathematica, condensing it into the laws that we know today as Newton’s laws. Newton’s discoveries opened the way to further development of the science of construction.

A crucial turning point in the history of bridge-building came when Jean-Rodolphe Perronet (1708–1794) established the École des Ponts et Chaussées (School of Bridges and Roads) in France in 1747. This school provided the basis for the construction of bridges according to the engineering principles of statics, strength of materials, mechanics and other parallel sciences that contributed, in a scientific manner, to the introduction of new construction principles in bridge-building that were supported by calculations. Perronet’s contribution to the further development of bridges is of inestimable importance. With the help of the findings of his school, he entirely changed the shape of the arch as the principal load-bearing element of the bridge. He flattened the arch to a remarkable degree and in doing so did away with all previous conceptions of arch design in bridge structures.

Of enormous importance for the further understanding of structural mechanics was the research conducted in the seventeenth century by Robert Hooke (1635–1703). He discovered the law of elasticity – known as Hooke’s Law – which is still valid today.

The most solid foundations of modern structural mechanics were, however, laid by Sir Isaac Newton (1642–1727). He presented his research in his 1667 work Philosophiae Naturalis Principia Mathematica, condensing it into the laws that we know today as Newton’s laws. Newton’s discoveries opened the way to further development of the science of construction.

A crucial turning point in the history of bridge-building came when Jean-Rodolphe Perronet (1708–1794) established the École des Ponts et Chaussées (School of Bridges and Roads) in France in 1747. This school provided the basis for the construction of bridges according to the engineering principles of statics, strength of materials, mechanics and other parallel sciences that contributed, in a scientific manner, to the introduction of new construction principles in bridge-building that were supported by calculations. Perronet’s contribution to the further development of bridges is of inestimable importance. With the help of the findings of his school, he entirely changed the shape of the arch as the principal load-bearing element of the bridge. He flattened the arch to a remarkable degree and in doing so did away with all previous conceptions of arch design in bridge structures.

Of enormous importance for the further understanding of structural mechanics was the research conducted in the seventeenth century by Robert Hooke (1635–1703). He discovered the law of elasticity – known as Hooke’s Law – which is still valid today.

The most solid foundations of modern structural mechanics were, however, laid by Sir Isaac Newton (1642–1727). He presented his research in his 1667 work Philosophiae Naturalis Principia Mathematica, condensing it into the laws that we know today as Newton’s laws. Newton’s discoveries opened the way to further development of the science of construction.

A crucial turning point in the history of bridge-building came when Jean-Rodolphe Perronet (1708–1794) established the École des Ponts et Chaussées (School of Bridges and Roads) in France in 1747. This school provided the basis for the construction of bridges according to the engineering principles of statics, strength of materials, mechanics and other parallel sciences that contributed, in a scientific manner, to the introduction of new construction principles in bridge-building that were supported by calculations. Perronet’s contribution to the further development of bridges is of inestimable importance. With the help of the findings of his school, he entirely changed the shape of the arch as the principal load-bearing element of the bridge. He flattened the arch to a remarkable degree and in doing so did away with all previous conceptions of arch design in bridge structures.
St John Nepomucene - Svatý Jan Nepomucký
Protector against floods and also protector of bridges

Statues, monuments and inscriptions are not a very common phenomenon on bridges in general. Only a few bridges can boast this type of decoration, which can give a bridge a special importance. The ancient Romans used to build stone tablets into their bridges, usually to commemorate the ruler responsible for its construction. By virtue of their function, bridges were structures on which rulers and others liked to place monuments or divine symbols. No-one could cross the bridge without observing the symbol on it. Erecting statues or commemorative symbols on bridges reached the height of its popularity in The Middle Ages. Perhaps the richest and most beautiful bridge from this point of view is the Charles Bridge in Prague, built over the Vltava in the early 15th century. Today over 30 statues and sculptures stand on the 516-metre-long bridge, transforming it into a true art gallery.

The old Roman bridge (built 133-134 AD by the Emperor Hadrian) leading to the Castel Sant'Angelo in Rome was completely renovated during the Roman baroque period, by...
For more than eleven centuries, until the beginning of the nineteenth century, the city of Dubrovnik (Latin: Ragusa) was a republic, defending its survival and freedom primarily through diplomacy but also by building city walls and other fortifications. The Dubrovnik city walls run uninterruptedly for 1,940 metres and represent a unique example of fortification architecture. Today they are an internationally recognised monument. The process of constructing the walls and fortifications continued for centuries. In the fourteenth century the people of Dubrovnik dug a moat in front of the Pile Gate, on the west side of the city. In the fifteenth century they did the same on the east side.

Entrance to the Old Town is through the Pile Gate on the west side, via a two-arch stone bridge and a wooden drawbridge. This stone bridge underwent numerous changes and transformations over the course of the centuries. The original bridge built by military engineer Giovanni da Stena between 1397...
This footbridge in České Budějovice connects the historic town centre with a new residential area. The bridge consists of a tied arch inclined to one side and anchored to a composite deck. The arch has a span length of 53.20 metres and a rise of 8.00 metres and is formed by a steel pipe; the suspenders are formed from I-shaped steel members. The deck is formed by two edge pipes mutually connected by a truss floor beam and a composite deck slab. The steel structure is supported by a short cantilever protruding from the end diaphragm. To resist bending moments, the diaphragms are supported by a pair of piles. The steel structure was assembled on temporary towers. When the towers were removed, the composite deck slab was cast.

The bridge was designed by Stráský, Hustý a partneři s.r.o. of Brno and built by JHP Mosty of Prague.

Main technical characteristics:
Arch bridge – length: 64.5 metres;
span length of the arch: 53.20 metres;
width between the railings: from 3.52 metres
Arts Bridge (Pont des Arts), Paris
The Bridge of Peace, Tbilisi

Photo: Gorazd Humar
The oldest surviving footbridges in the United Kingdom include "clapper bridges", a simple form of bridge constructed from massive stone slabs supported by stone masonry piers. The most famous examples include the Tarr Steps in Somerset, a 55-metre bridge of 17 spans that is believed to date from around 1100; and Postbridge in Devon, a three-span bridge dating from the thirteenth century. The deck slabs at Postbridge are reported to weigh up to 8 tonnes each. These bridges still rank as significant engineering achievements given the limited means available at the time of construction. The bridges have remained in continuous use since they were built, carrying both foot and packhorse traffic. Postbridge is recognised for its historic significance and has been listed as a protected historical monument since 1967.

Few historic timber footbridges have survived. The Mathematical Bridge, which spans 12 metres across the river Cam in the university town of Cambridge, originally dates from 1749. The current bridge is actually a reconstruction to the same design, the bridge having been completely rebuilt in 1866 and 1905. The design, by William Etheridge, uses straight timbers arranged radially and tangentially to a circular arc, giving rise to the bridge’s nickname. It has been suggested that this represents a highly efficient use of the timber, and it has also been used for the timber centring for a number of masonry arch bridges. However, there is little evidence to support this supposition, and many of the timbers in the bridge are likely to carry very little load. Although the Mathematical Bridge in Cambridge is well known, there is an essentially identical, albeit smaller, bridge of the same type at Iffley Lock in Oxford, built in 1924.
A new bridge for cyclists and pedestrians over the river Tisza in Hungary was opened to traffic in 2011. The "Tiszavirág" (Mayfly) bridge creates a new link for the city of Szolnok and seems destined to become an emblematic work of art for the city. As well as the design of the bridge itself, the design competition included the reconstruction of the urban square on the right bank and the adjoining green area on the left bank in order to make the bridge fully accessible to pedestrians, cyclists and disabled users. The design competition was won by a team consisting of bridge consultants Pont-Terv and architects ADU. The winning concept was a slender, elegant, splayed arch structure, which was intended to combine a dramatic visual impact with good functionality and economic construction.

The steel arch bridge has a main span of 120 metres composed of two tubular arches splayed outwards at 60° from the horizontal and a spatial truss deck girder suspended by tie-rods. The deck consists of a steel grid covered with composite planks of wood and resin, which is a maintenance-free material. The glass panels spaced regularly along the centre line give variety to the wide homogeneous surface.

The LED lighting consists of a dotted line of lamps on the outer side of the arches, and light beams for illuminating the inner side. The illumination of the deck is provided by LED lights embedded in the handrails.

Since dynamic behaviour is a key issue in the case of slender pedestrian bridges, in-depth aerodynamic studies were carried out and four tuned mass dampers were incorporated into the deck in order to reduce pedestrian-related vibrations.

Erection on site was carried out using two auxiliary supports in the river bed. Since its inauguration the bridge has become very popular in Szolnok, and serves as a venue for various events in the city.

Main technical characteristics:

- **Main span:** 120 m
- **Length:** 186 m (main steel river bridge)
- **Total length:** 320 m (including RC approach bridges)
- **Width:** 5 m
- **Structural steel:** 380 t
- **Design:** Pont-Terv Zrt ADU Architects
- **Construction:** KÖZGÉP Zrt

Text by: Pállonyi Miklós / Pont-Terv Zrt, Budapest, Hungary
The Rialto Bridge is undoubtedly the king of Venice’s bridges. It is an unmistakable icon of the beautiful lagoon city and at the same time the oldest of the four bridges that cross the Grand Canal, the city’s main thoroughfare. It is 22.1 metres wide, making it the widest of Venice’s 431 bridges. Another unique feature are the 24 little shops that line the bridge: two rows of them rising up in steps on one side and descending on the other.

The bridge has a rich and varied history, just like Venice itself. It was built in 1591, in the period of the city’s greatest prosperity. Preparations for its construction took almost a century, beginning in 1503 when a design for a new bridge was drawn up after the previous wooden bridge was destroyed by fire. It was not until after 1550 that the plan to build a new bridge began to be taken more seriously. The city authorities held a public competition to choose a design. The committee responsible for the competition was presided over by the powerful and influential salt merchants’ guild, who wanted new shops on the bridge from which to sell their salt. The public competition was one of the first in history for an important construction project of this kind, and perhaps the first ever held for the construction of a bridge. One of the conditions laid down for the design of the new bridge was that the Doge’s ceremonial galley must be able to pass under it.

In 1588, after a long search for a suitable solution and numerous quarrels, construction of the new bridge was entrusted to the architect Antonio da Ponte, who designed a single-arch bridge to span the Grand Canal. The new bridge, built of white Istrian stone, was completed three years later. The biggest technical challenge was represented by the foundations of the main arch, which was squeezed between the houses on either bank of the canal. Using specially designed foundations of considerable width, Da Ponte skilfully transferred the horizontal forces generated by the arch structure into the ground via foundations supported by wooden piles.

In 1591 the Rialto Bridge was opened to traffic. The 24 stone-built shops placed on the bridge soon opened for business and a safe and broad route across Venice’s main traffic artery, the Grand Canal, was thus created. Most importantly, with its single arch, the new bridge allowed boats to pass along the Grand Canal unimpeded. The Rialto Bridge is probably the most famous and most photographed bridge in the world.
Jutting out towards the Adriatic sea, Pescara is a city rich in contrasts: on the one side, the sea and a mainly urban territory that face each other, on the other, the river with the same name, Pescara, that splits the urban fabric in two quarters which are distinct and diverse both from an architectural and from a social point of view. In this difference lies, the origin of the “Ponte del Mare” (Sea Bridge), conceived as an element which can facilitate the physical and cultural reconnection of two seemingly opposite realities, with a past which is rich in history and a future in constant growth. Designed by Walter Pichler, an architect from Bolzano, the work is the tangible expression of the desire to give unity back to the urban fabric of Pescara, recreating the continuity of its seafront. The bridge’s morphology comes from this desire, two pathways that lift up from their respective banks as one to meet, ideally, in a place of physical and social reconciliation, suspended above the river. In fact, two rows of cables branch off from a central pier to support and balance the bridge’s two separate lanes, the bicycle lane which is 4 metres wide and the pedestrian lane which is 3 metres wide, that near the two ends merge into a single 5 metres wide lane. In this way, the bridge recreates a sort of empty space in the air, rich in meaning, that enclosed between the two curvilinear lanes gives the work the symbolic value of a monument to peace and gateway to new cultural exchanges, like those recently developed by the countries that border the Adriatic Sea.

Client: Comune di Pescara / Designers: Walter Pichler – Mario De Miranda
The Malt Island Footbridge crosses one of the arms of the river Odra in the centre of the city of Wrocław. The footbridge connects the riverside promenade to Malt Island (Wyspa Słodowa). The structure consists of two reinforced concrete spans and a main span in the form of a braced steel arch.

Design: Mosty-Wrocław s.c., chief designer Jan Biliszczuk

Spanning the river Dunajec, this cable-stayed footbridge links the village of Sromowce Niżne in Poland to the village of Červený Kláštor in Slovakia. The deck of the footbridge is suspended from a pylon consisting of steel tubes. The deck itself is a glued laminated timber structure. On completion in 2006, the bridge became the longest glued laminated timber bridge in the world, with a span of 90 metres.

Design: Mosty-Wrocław s.c., chief designer Jan Biliszczuk
The purpose of the footbridge is to connect the two banks of the Manzanares river. Although the river is not very wide, the footbridge has to cross the two carriageways of the M30 peripheral motorway, which run parallel to the river on both sides. The conceptual design consists of two curved U-shaped bridges connected in the centre and supported by a single pylon located on one of the river banks by means of cable stays. The shape of the bridge is the result of all the mentioned constraints as well as of the need to respect the maximum grade permissible for disabled users. The design was produced with the help of a scale model. The main span measures 120 metres and the height of the pylon is 42 metres.

The deck is a 2.44-metre-wide steel trapezoidal closed box which is complemented by transverse beams and a tube to increase the structural width and, consequently, the horizontal moment of inertia. The cables are of the locked coil type with a maximum diameter of 40 mm which were prefabricated to their exact length before installation. The steel pylon has a circular cross-section with a diameter ranging from 1.5 metres at the base to 0.3 metres at the top.

The deck was built in segments in a steel workshop. It was erected on site and welded to provisional supports limiting the spans to approximately 25 metres. These operations had to be performed during the night to allow interruption of traffic along the M30 motorway.

Owner: Municipality of Madrid / Design: Carlos Fernández Casado S.L. (Spain) / Contractor: FCC (Spain) / Steelwork: Megusa (Spain) / Cables: Tensotec (Italy)
The Kintai Bridge is a unique bridge consisting of five wooden arches spanning the river Nishiki. The bridge was built in 1673 to link the town where Kikkawa Hiroie, the feudal lord, and upper-level samurai lived, and the town where mid-level and low-level samurai and merchants lived. The river Nishiki served as an outer moat for the lord’s castle. Later, in the Edo period (from the early seventeenth century to the mid-nineteenth century), the common people came to enjoy peaceful everyday lives, and a bridge was built to be sturdy enough to withstand floods and provide a crossing between the two towns.

To date the existing bridge has been repaired and reconstructed 15 times. Rebuilding the bridge has always been done locally. For this reason, the necessary skills and techniques have been passed down from generation to generation.

Original designer: Kikkawa Hiroie, first lord of the Iwakuni Domain (17th century)
With a main span of 390 metres, the Kokonoe “Dream” Suspension Bridge is the longest pedestrian suspension bridge in Japan, spanning the Naruko Gorge at a height of 173 metres.

Owner: Town of Kokonoe
Structural Designer: Kyodo Engineering Co. Ltd.
Constructor: Kawada Industries Inc.
FOOTBRIDGES - SMALL IS BEAUTIFUL

Content

ECCE President’s introduction .. 007
Editor’s foreword ... 008
Some notes on the history of bridge structures ... 011

BOSNIA AND HERZEGOVINA
- The Old Bridge (Stari most) .. 040

CROATIA
- Footbridges of Dubrovnik .. 054
- Footbridge over Jazine Bay ... 060
- Pedestrian suspension bridge over the Drava ... 061
- Skradinski Buk Footbridge ... 062
- Vrlić footbridge over the gorge of the Pninčica .. 064
- Footbridge over the Sava ... 066
- Memorial Footbridge ... 066
- Footbridge over the river Vuka .. 067
- Footbridges in the Plitvice Lakes National Park .. 068

CYPRUS
- Paphos Castle Footbridge .. 072
- Eila Footbridge ... 072
- Tsafosa Bridge ... 074
- Skerfou Footbridge .. 076
- Tri Elass Footbridge ... 076
- Kaminaria Footbridge .. 077
- Domina Footbridge ... 077
- Ctya Footbridge ... 078
- Agios Athanasios Footbridge ... 080
- Pedieos River Footbridge ... 081
- Agia Kyriaki Footbridges ... 082

CZECH REPUBLIC
- The Charles Bridge (Karluv most) .. 084
- Bridge over the Vltava .. 092
- Bridge across the Vltava at Lake Vrana ... 092
- Bridge over the river Svatka .. 098
- Bridge over the R3508 expressway ... 100
- Bridge over the D1 motorway .. 102
- Sport Bridge over the river Olše/Ola .. 104

ESTONIA
- Viiliandi suspension bridge ... 106
- KellJoes Suspension Bridges .. 107
- Keaari Old Bridge .. 108
- Daivi’s Bridge .. 109
- Tartu Arch Bridge (Tartu Kambali) ... 111

FRANCE
- Nõmme Footbridge ... 111
- Lukši Sky Bridge .. 112
- Vaide Footbridge .. 112
- Bridge at the Estonian University of Life Sciences .. 112
- Vallikravli Footbridge ... 113
- Seaplane Harbour Footbridges (Estonian Maritime Museum) ... 114

GEORGIA
- Georgian Footbridges in the Past .. 142
- Pompey’s Bridge .. 144
- Anaklia Footbridge .. 145
- The Bridge of Peace ... 148

GERMANY
- Chain Bridge (Kettensteg) .. 152
- Neuschwanstein Castle (Marienbrücke) ... 154
- Three Countries Bridge (Drämländerbrücke) .. 156
- Harbour Footbridge ... 158
- Dragon Tail Bridge .. 160
- Plötz Bridge (Blaue Welle) ... 162
- Blinky Springs to Fame, a “bridge sculpture” ... 163
- Erbe-Sieg Footbridge ... 166

GREAT BRITAIN
- Postbridge ... 168
- Mathematical Bridge ... 169
- Kirkton of Glenalta Bridge ... 170
- Maryhill House Footbridge .. 171
- Rey’s Bridge .. 172
- Locksmashow Footbridge .. 173
- Backler Crossing ... 174
- Halgavor Bridge .. 176
- Fisherman’s Bridge .. 177
- Castleford Bridge ... 178
- Forteada Bridge .. 179

GREECE
- Eleutheria Bridge, Rethymno, Crete .. 180
- Pelida or Kalogerko Bridge .. 182
- Alikianos Bridge ... 186
- Simas Bridge .. 188
- Harp Bridge ... 190

HUNGARY
- Sárvár, the Castle Gate Bridge ... 194
- Alcánta Arborium Bridge .. 195
- Budapest City Park, Wünsch Bridge ... 196
- Zalenski Footbridge .. 196
- Pál Vasárhelyi Bridge ... 199
- Salgótarján Footbridge ... 200
- Architecture park covered wooden bridge .. 201
- Mayfly footbridge over the river Tisza ... 202
FOOTBRIDGES - SMALL IS BEAUTIFUL

IRELAND, Republic and Northern
- Liffey Bridge - Ha’penny Bridge 206

ITALY
- SOME THOUGHTS ABOUT FOOTBRIDGES 208
- The Old Bridge (Ponte Vecchio) 216
- Bridge of the Alps (Ponte degli Alpi) 218
- The Rialto Bridge (Ponte di Rialto) 222
- The Bridge of Sighs (Ponte dei Sospiri) 226
- Triple Bridge of Comacchio (Trisporti di Comacchio) 228
- Footbridge over the Reno River (Passerella sul fiume Reno) 230
- Footbridge over the Po River (Passerella sul fiume Po) 233
- Olympic Bridge (Passerella Olimpionica) 233
- Bridge over the Tavile River (Ponte sul fiume Tavile) 236
- Rari Nantes Footbridge 238
- Footbridge over the A13 motorway 240
- Sea Bridge (Ponte del Mare) 242
- Footbridge over the Adige River (Passerella sul fiume Adige) 244
- Science Bridge (Ponte della Scienza) 248
- Music Bridge (Ponte della Musica) 250
- Footbridge at Mirabell Harbour (Passerella Pedonale al Porto di Mirabell) 251

LATVIA
- Footbridge over city canal 254
- Footbridge over the canal next to the Latvian National Opera 254
- Footbridge over the river Dgars 255
- Footbridge over the river Daugava near the Devil’s Cave 257
- Pedestrian overpass over Karls Ulmanis Avenue (Kārla Ulmanes gatve) 258
- Cesīs Castle Park Bridge 259
- Footbridge over Cesīs Castle moat 259
- Mitava footbridge over the river Driakas 260

LITHUANIA
- Three Maidens Bridge 264
- Trakai Castle Footbridge 265
- Lake Birvės Bridge 266
- Daunekas Bridge 269
- Footbridge to Kibonaikiškis Forest 270
- Zaraesa Bridge 270

MALTA
- Fortifications and Stone Footbridges of Valletta 272
- Victoria Lines Masonry Bridges 275
- St. Elmo Footbridge 278

MONTENEGRO
- Bridge over the Butorina stream (Most preko rijeke Tutorina) 282
- The Old Bridge at Moćanica (Most mocićkih Mostova) 282
- Ribnica Bridge (Most na Ribniču) 284
- Rijeka Crnojevića Bridge (also known as Danijil’s Bridge) 285
- The Tseri’s Bridge (Carve most) 289
- The Moscow Bridge (Rusi most) 289

POLAND
- FOOTBRIDGES IN POLAND, PAST AND PRESENT 290
- Footbridge over the river Odra 291
- Stone footbridge over a walled footpath 291
- Cast-iron arch bridge over the river Brzegomka 292
- Opatówka cast-iron footbridge 292
- Courtyard footbridge at Lviv Polytechnic 293
- Cable-stayed footbridge in Tymianowca 293
- Footbridge over Traa Łasienkowska 294
- Footbridge over the river Kladnica 294
- Cable-stayed footbridge over the river Byszytsya 294
- Crooked Stick (Krwawy Kij) footbridge over the A4 motorway 295
- Eros Arch footbridge over the A4 motorway 295
- Malis Island Footbridge over the river Odra 296
- Footbridge over the river Dunajec 297
- Footbridge over the S11 expressway 300

PORTUGAL
- Pedro and Inês Footbridge 306
- Carpinteira Footbridge 310

SLOVENIA
- The Hrubšica Mansion Bridge 314
- The Hradecky Bridge 318
- The Doblar Bridge (Slovenski most) 328
- The Triple Bridge (Tromostoj) 324
- The Cerkvenik Bridge 326
- The Marić Bridge 328
- New footbridge in Ptuj 332
- Students Footbridge 334
- Footbridge over the Sava 336
- The “Beruna Bridge” – a film star 338

SPAIN
- Walkway connecting the Trasmientrín terminal and new passenger halls 342
- GFRP Footbridge 344
- Pedro Arrupe Footbridge 346
- Pedestrian/Bicycle Overpasses on Madrid’s Green Cycling Ring 350
- Bowstring Arch Overpasses on the Madrid Cycling Ring 351
- La Cava Footbridge 352
- Polvorina Footbridge 356
- Expo 2008 Tubular Footbridge 358
- Las Delicias Footbridge 360
- Cable-stayed footbridge over the river Ebro 362
- Footbridge over the river Segre 364
- Footbridge over the river Fuengirola 364
- Cable-stayed footbridge over the river Manzanares 366
- La Paloma Footbridge 368
- Matadero and Invernadero Footbridges 372
- Villafant hybrid footbridges 374

SWITZERLAND
- The Chapel Bridge (Kapellbrücke) 376
- The Chafl Bridge (Spreuerbrücke) 380

TURKEY
- Three footbridges in Izmit (UG 1, UG 2, UG 3) 382

JAPAN
- Kintai Bridge (Kintai-kyo) 386
- Monkey Bridge (Banabashi) 392
- Ipponbashi 391
- Kozuyu Bridge 392
- Inachus Bridge 393
- Kujira (Whale) Bridge 393
- Tottori Flower Corridor/Tottori Flower Park 394
- Shiroya 21 Bridge 396
- Karato Market Approach 397
- Sakae-cho Greenwalk 397
- Gaman Bridge 398
- Kikiki Pedestrian Suspension Bridge (Kikiki no Tsuribashi) 398
- Kawasaki Muza Deck 399
- Oita Station Pedestrian Walkway 401
- Seishun Bridge 401
- Kokonoe “Dream” Suspension Bridge (Kokonoe “Yume” Otsurihashi) 402
- Hama Mirai Walk Footbridges 403

ECCE member organisations 410

ECCE presentation 412